

Gate Arrays / Embedded Arrays / Standard Cells

2021

Business Concept

Expanding use of smartphones and tablets is giving broadband internet and wireless communications even greater roles in our daily lives, and making the arrival of the ubiquitous network society an inevitable reality. In particular, semiconductors for use in portable devices, information terminals, in-vehicle devices and FA devices are expected to provide higher performance in terms of thinner structure, lighter weight, and longer operation with limited power supply. We have been focusing on the creation of compact, lowpower semiconductors since we started the development of CMOS LSI for watches in 1969. Since then, we have steadily built up our expertise in energy-saving, space-saving, and time-saving designs. This has enabled us to quickly obtain the semiconductor development technology needed to meet the demands of the new era of ubiquitous networks. Our concept is to develop "saving technologies" to reduce power consumption, development times, and implementation space. Our goal is to be a true partner for you, providing you with strategic advantages, enhancing your customer value based on our "saving technologies" and mixed analog/ digital technologies that we have cultivated, as well as our design capabilities, manufacturing capabilities and stable supply that can satisfy your detailed requirements.

Environmental Responsibility

Epson semiconductor technology provides environmental value to customers by creating and manufacturing eco-friendly products.

1) We Epson's products are surely complying with the Eu-RoHS (2011/65/EU) Directive.

2) We are releasing information about the containing chemical substances of products at web-site. Product of QFP & BGA are described in the following URL. global.epson.com/products and drivers/semicon/information/package lineup.html *Some products are excluded.

Environmental management system third party certification status ISO14001

Type of certification: ISO 14001: 2015, JIS Q 14001: 2015

Awarded to: TOHOKU EPSON CORPORATION, SEIKO EPSON CORPORATION

(Fujimi Plant, Suwa Minami Plant)

Certified by: Bureau Veritas Japan Co., Ltd.

Date of certification: April 3, 1999 Type of certification: ISO 14001: 2015

Awarded to: Singapore Epson Industrial Pte. Ltd.

Certified by: SGS

Date of certification: Jan 12, 1999

Epson's Quality Policy

Keeping the customer in mind at all times, we make the quality of our products and services our highest priority. From the quality-assurance efforts of each employee to the quality of our company as a whole, we devote ourselves to creating products and services that please our customers and earn their trust. Epson has acquired ISO9001 and IATF16949 certification with its IC, module and their application products.

Quality Management system third party certification status

Type of Certification: ISO9001: 2015, JIS Q 9001: 2015

Awarded to: TOHOKU EPSON CORPORATION, SEIKO EPSON CORPORATION

(Fujimi Plant, Suwa Minami Plant, Tokyo Office)

Certified by: Bureau Veritas Japan Co., Ltd.

Certificate No.: 3762381

Initial Date of Certification: October 10, 1993

Type of Certification: ISO9001: 2015

Awarded to: Singapore Epson Industrial Pte. Ltd.

Certified by : SGS

Certificate No.: SG03/00011

Initial Date of Certification: February 4, 2003

IATF16949

Type of Certification: IATF16949:2016

Awarded to: TOHOKU EPSON CORPORATION, SEIKO EPSON CORPORATION (Fujimi Plant, Suwa Minami Plant, Tokyo Office), Epson Europe Electronics GmbH, Epson America, Inc., Epson Canada Ltd.(Vancouver Design Center)

Certified by: Bureau Veritas Japan Co., Ltd.

Certificate No.: 281371

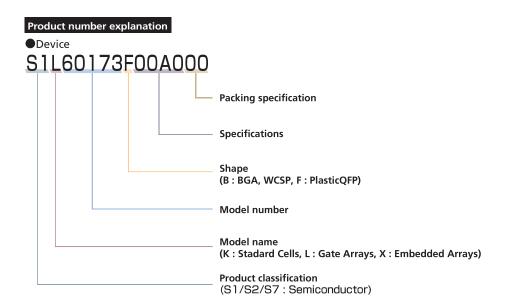
Initial Date of Certification: Dec 9, 2017

Type of Certification: IATF16949:2016

Awarded to: Singapore Epson Industrial Pte. Ltd.

Certified by: SGS

Certificate No.: SG07/00021


Initial Date of Certification: May 2, 2018

CONTENTS

History of Epson semiconductor	4-5	Package Lineup	17-19
ASIC Product Lineup	6-7	Gate Array Package List	20-22
Gate Arrays	8-9	Package's Thermal Resistance	23
Embedded Arrays	10	User Interface	24
Standard Cells	11	Development Flow	25
Macro Cells	12-13	Epson ASIC Website	26
Epson Originals	14-16		

History of Epson semiconductor

Value Generated by Epson Technologies

Value generated by Epson's efficient, compact and precision technologies

Smart technologies

Create convenient and easy-to-use products that can be used anytime and anywhere, and which help customers reduce waste, and save effort, time and money.

Environment

Leverage Epson products to reduce environmental impact by improving customers' work processes, and contribute to a sustainable society.

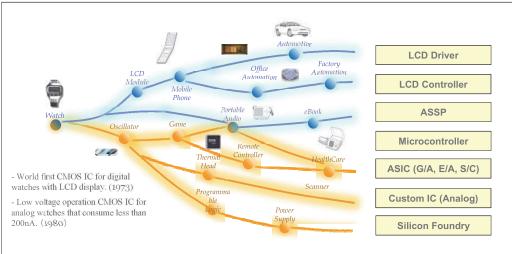
Performance

Use outstanding products to contribute to customers' performance through productivity, accuracy and creativity.

The role of Microdevices Div. and Semiconductor Business

Microdevices Vision and Strategy: Supp Contribute to Epson's finished products and to the development of smart communications, power, transportation and manufacturing systems with advanced Epson quartz timing and sensing solutions and low-power semiconductor solutions. Semiconductor Business 精(Sei) Original Precision **Efficient** technology Epson finished products الِـٰٰ(Sho) Compact Power solutions Sensing solutions Timing solutions Communications/ networks

Semiconductor business contribute to the value creation of the Epson finished product, by advanced "Power Saving" solutions.


History of Epson semiconductor

ASICs

History of Epson Semiconductor's Technology

As the semiconductor division of "worldwide watch maker Seiko", semiconductor business has expanded into LCD Drivers, ASICs and MCUs from IC for Watches.

These businesses are all based on Epson's energy-saving technology.

Energy-Saving Technology; Technology that reduces power consumption from both sides of process and circuit have been nurtured by Epson over 40 years since division was founded.

Epson Semiconductor's History

ASIC Product Lineup

Epson's ASIC offerings aim to provide the best overall solution thus enabling our customers to get products to market successfully. Epson ASIC products include gate arrays that address the need for fast turnaround, at low IC development costs; Standard Cells, that make system solutions possible at the lowest unit price, and embedded arrays that combine the fast turnaround time of gate arrays with the ability to implement system level functionality on chips available with standard cells.

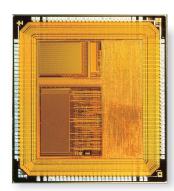
S1L60000	0.25μm	Core 1.8V, 2.0V, 2.5V					
S1L50000	0.35µm	Core 2.0V, 2.5V, 3.3V 5V interface					
S1L5V000	0.35μm	Core 3.3V, 5.0V 5V single power supply					

EPSON

The gate array is a member of the ASIC family that offers quick turnaround time during the development cycle at the lowest development cost. This is achieved by Epson stocking pre-fabricating Base/Bulk wafers that have transistors arranged in the form of an array. Our customers design the "wiring", that connects the transistors, that bring specific functionality to the design of the ASICs.

Base arrays are prefabricated with different numbers of transistors giving customers a wide range of choices to implement their circuits. This offers flexibility to customers by giving them the choice of adding or subtracting functionality from the design.

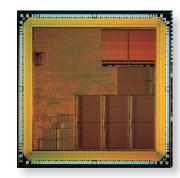
ASIC Product Lineup


ASICs

Embedded Arrays

S1X80000	0.15μm	Core 1.8V 3.3V single power supply with LDO
S1X60000	$0.25\mu\mathrm{m}$	Core 1.8V, 2.0V, 2.5V 5V interface
S1X50000	$0.35\mu\mathrm{m}$	Core 2.0V, 2.5V, 3.3V 5V interface
S1X5V000	0.35 μ m	Core 3.3V, 5.0V 5V single power supply

The embedded array combines the fast turnaround time of gate arrays with the ability to implement system level functionality available in standard cells. The fast turnaround is accomplished by starting some of the wafer fabrication processes in parallel with the embedded array design process. In selecting an embedded array approach, the designer trades off the ability to change the base array in the last minute, possible with a gate array, with the need to implement system level functionality, with gate array like turnaround.


By offering gate arrays, standard cells, and embedded arrays; Epson offers a choice to meet the individual needs of our

Standard Cells

S1K80000	0.15 μm	Core 1.8V 3.3V single power supply with LDO
S1K60000	0.25μm	Core 1.8V, 2.0V, 2.5V 5V interface

Standard cells (cell-based ASICs) are semi-custom ICs that enable optimally designed internal logic cells, memories such as ROM and RAM, CPU, and analog circuits to be implemented all on the same chip. As such, standard cells enable more design flexibility than gate arrays, offer more advanced functionality and higher integration, and can be developed as system LSI optimized for the customer's needs. Such optimization enables the achieving of ever more advanced functionality and lower power consumption.

Gate Arrays

Epson's Gate Array is a suitable solution for replacing existing devices because this Gate Array option gives flexibility to adapt the power supply and layouts of other various signals. Furthermore Epson has invested on the new Gate Array series called "S1L5V000" which supports 5V single power supply with $0.35\mu m$ process. Since it is a new series, it is also suitable for long life time applications.

C11 E000	O Sorios													Core	I/O
S1L5000	U Series													2.0V	2.0V
Se	ries	S1L50	000 Seri	es										2.00	3.3V
		• Ultra l	arge scale	integration	on (0.35 μ	m CMOS,	using 2-, 3	- or 4-laye	er interco	nnect proc	ess)			2.5V	2.5V
		• High-s	peed ope	ration (0.1	4 ns delay	, at 3.3 V,	with 2-inp	out power	NAND Ty	p.)				2.5 V	3.3V
Food	tures	• Low p	ower cons	umption (Internal c	ell: 0.7 <i>µ</i> V	V/MHz/gat	e at 3.3 V)					3.3V	3.3V
real	lures	• Drivab	•	0.1, 1, 3, 8							3 V,			3.34	5.0V
			lor	= 0.1, 0.5,	1, 3, 6 m	A at 2.5 V	10L = 0.05	, 0.3, 0.6,	2, 4 mA a	t 2.0 V)					
	Double layer	S1L50062	S1L50122	S1L50282	S1L50552	S1L50752	S1L50992	S1L51252	S1L51772	S1L52502	S1L53352	S1L54422	S1L55062	S1L56682	S1L58152
Model	Triple layer	S1L50063	S1L50123	S1L50283	S1L50553	S1L50753	S1L50993	S1L51253	S1L51773	S1L52503	S1L53353	S1L54423	S1L55063	S1L56683	S1L58153
	Quadruple layer	S1L50064	S1L50124	S1L50284	S1L50554	S1L50754	S1L50994	S1L51254	S1L51774	S1L52504	S1L53354	S1L54424	S1L55064	S1L56684	S1L58154
Total BC (I	Row gates)	5.8k	12.0k	28.8k	55.5k	75.8k	99.2k	125.8k	177.1k	250.2k	335.9k	442.2k	506.7k	668.6k	815.5k
	Double layer	2.9k	6.0k	14.4k	26.1k	35.7k	46.7k	56.6k	79.7k	112.6k	144.5k	176.9k	202.7k	267.5k	326.2k
	Triple layer	5.1k	10.6k	25.3k	47.2k	64.4k	84.4k	100.7k	132.8k	187.7k	251.9k	309.5k	354.7k	468.0k	570.9k
	Quadruple layer	5.5k	11.4k	27.3k	52.8k	72.0k	94.3k	119.5k	168.2k	237.7k	319.1k	397.9k	456.1k	601.7k	734.0k
Total Lead Count	80 μ m	_	56	88	124	144	168	188	224	264	308	352	376	432	480
Total Lead Count	70 μ m	48	64	104	144	168	192	216	_	_	_	_	_	_	-
	Internal gates			tpd =	0.14 ns (3.3 V, F/O	2, typica	l wire loa	d), 0.21 n	s (2.0 V, F	/O 2, typi	cal wire l	oad)		
Delay Time	Input buffer	$t_{pd} = 0.3$	88 ns (5.0 °	V, F/O 2, ty	pical wire	e load) Le	vel shifter:	0.4 ns (3.	3 V, F/O 2	, typical w	ire load),	1.3 ns (2.0) V, F/O 2,	typical wi	re load)
	Output buffer				$t_{pd} = 2.1$	2 ns (5.0 °	V) Level sl	nifter: 2.0	2 ns (3.3	V), 3.9 ns	(2.0 V) CI	_ = 15 pF			
I/O	level						CMOS	, LVTTL, F	CI-5V, PC	I-3.3V					
Input	modes				L	VTTL, CM	IOS, Pull-ι	ıp/Pull-do	wn, Schn	nitt, Fail-sa	afe, Gate	d			
Output	modes				Normal, Open drain, 3-state, Bidirectional, Fail-safe, Gated					nal, Fail-s					

Note: Figures shown for usable gates are approximations. The actual number of usable gates varies according to the implemented circuitry.

S1L5V00	0 Series								Core	I/O	
Se	ries	S1L5V000 se	eries						5.0V	5.0V	4
Fea	tures	High speed on Low power co	peration (internal ensumption (Inter	gate delay: 0.19 inal cell: $5V 1.3 \mu V$, 3-, 4-layer intercons as at 5V, 0.29ns at V/MHz/BC, 3.3V 0. =0.1, 1, 2, 6, 10mA	3.3V, 2-input pov 54uW/MHz/BC)	wer NAND Typ.)		3.3V	3.3V	1
	Double layer	S1L5V012	S1L5V042	_	S1L5V112	_	S1L5V252	_		S1L5V482	
Model	Triple layer	S1L5V013	S1L5V043	S1X5V513*	S1L5V113	S1X5V523*	S1L5V253	S1X5V5	33*	S1L5V483	
	Quadruple layer	S1L5V014	S1L5V044	S1X5V514*	S1L5V114	S1X5V524*	S1L5V254	S1X5V5	34*	S1L5V484	
Total BC (Row gates)	8.8k	42.0k	26.0k	109.2k	90.3k	254.3k	235.0	lk	479.9k	
	Double layer	2.6k	12.6k	_	32.7k	_	63.5k	_		119.9k	
Usable gates	Triple layer	5.3k	25.2k	14.3k	65.5k	49.7k	139.8k	129.3	k	239.9k	
gates	Quadruple layer	6.1k	29.4k	16.9k	76.4k	58.7k	165.3k	152.8	k	287.9k	
Total Le	ad Count	48 104 168 256 308							308		
	Internal Gates	tpd=0.	19ns (5.0V opera	tion, F/O=2, typi	cal wiring load), t	t _{pd} =0.29ns (3.3V	operation, F/O=2	, typical v	viring loa	ıd)	
Delay Time	Input Buffer	t _{pd} =	0.45ns (5.0V oper	ration, F/O=2, typ	ical wiring load), t	t _{pd} =0.55ns (3.3V d	operation, F/O=2,	typical wir	ing load)		
	Output Buffer		tpd=2	07ns (5.0V oper	ation, CL=15pF),	tpd=2.95ns(3.3V	operation, CL=15	pF)			
I/O	level	CMOS, TTL, LVTTL									
Input	modes		TTL, LVTTL, CMOS, Pull-up/Pull-down, Schmitt, Fail-safe, Gated								
Output	t modes		Normal, Open-drain, 3-state, Bidirectional, Fail safe, Gated								

Note: Figures shown for usable gates are approximations. The actual number of usable gates varies according to the implemented circuitry.

^{*:} Analog PLL built in master

Gate Arrays

ASICs

											Core	1/0	
S1L6000	0 Series										1.8V	1.8V	
Ser	ies	S1L60000) Series								1.60	3.3V	
				(0.05				,			2.0V	2.0V	
		9	 Ultra large scale integration (0.25 μm CMOS, using 3-, 4-layer interconnect process) High-speed operation (107 ps internal gate delay at 2.5 V, with 2-input NAND Typ.) 						2.00	3.3V			
Feat	ures		•	•	,		•	ut NAND Typ.)		2.5V	2.5V	
. 53.1			• Drivability (loL = 0.1, 1, 3, 6, 12, 24 mA at 3.3 V, loL = 0.1, 1, 3, 6, 9,18 mA at 2.5 V,							2.51	3.3V	l	
			lot = 0.05	, 0.3, 1, 2, 3, 6	mA at 2.0 V,	IoL = 0.045, 0.	27, 0.9, 1.8, 2.	7, 5.4 mA at 1	.8 V)				
Model	Triple layer	S1L60093	S1L60173	S1L60283	S1L60403	S1L60593	S1L60833	S1L61233	S1L61583	S1L	61903	S1L62513	
Model	Quadruple layer	S1L60094	S1L60174	S1L60284	S1L60404	S1L60594	S1L60834	S1L61234	S1L61584	S1L	61904	S1L62514	
Total BC (R	low gates)	99 . 2k	171.8k	284.4k	400.3k	595.4k	831.6k	1,234 . 9k	1,587,8k	1,9	003.0k	2,519.6k	
Usable	Triple layer	59.6k	103 . 1k	142.2k	200 . 2k	297.7k	332.7k	494.0k	635 . 1k	76	61 . 2k	1,007.9k	
gates	Quadruple layer	69 . 5k	120.2k	184 . 9k	260 . 2k	387 . 0k	415 . 8k	617 . 5k	793.9k	9	51.5k	1,259.8k	
Total Lead Count	80 μ m	_	_	_	_	_	284	344	388		424	488	
Total Lead Count	70 μ m	112	148	188	224	272	-	-	-		-	-	
	Internal gates				t _{pd} = 107 ps (2.5 V, F/O 1,	typical wire l	oad)					
Delay Time	Input buffer				t _{pd} = 270 ps (2.5 V, F/O 2, 1	ypical wire lo	oad)					
	Output buffer				tpd = 16	500 ps (2.5 V,	CL = 15 pF)						
I/O le	evels				CM	IOS, LVTTL, P	CI-3.3V						
Input r	modes		C	MOS, LVTTL,	Pull-up/Pull-o	down, Schmit	t, Level shifte	er, Fail-safe, G	ated				
Output modes Normal, Open drain, 3-state, Bidirectional, Level shifter, Fail-safe, Gated													

Note: Figures shown for usable gates are approximations. The actual number of usable gates varies according to the implemented circuitry.

Embedded Arrays

Creating hard macros for cells that are highly integrated and have advanced functionality enables development of system-on-a-chip designs, and utilization of the sea-of-gates structure in the logic means that the development period subsequent to the interconnection process is roughly equivalent to that for gate array chips.

In addition, the base array for LSI can be reused allowing only the logic block to be modified in development lead time equivalent to that for gate array chips.

Embedded array technology also facilitates circuit design changes and thereby helps avoid the risks associated with product modifications.

S1X5V000 Series

		Core	1/0	L
Series	S1X5V000 Series	3.3V	3.3V	
Features	 High-density integration (0.35 μm CMOS process technology and 2/3/4-layer interconnect process) High-speed operation (Internal gate delay: 0.19ns ps/5.0 V, 0.29ns/3.3 V, 2-input power NAND Typ.) Low power consumption (Internal cell: 1.3 μ W/MHz/gate, 5.0V, 0.54 μ W/MHz/gate, 3.3V, 2-input NAND Drivability (IoL=0.1, 1, 3, 8, 12 mA at 5.0 V, 0.1, 1, 2, 6, 10 mA at 3.3 V 	5.0V Typ.)	5.0V]

\$1X50000 Series

		Core	1/0	4 -
Series S1X50000 Series		2.0V	2.0V	
	• High-density integration (0.35 μm CMOS process technology and 3/4-layer interconnect process)		3.3V	
	 High-speed operation (Internal gate delay: 150 ps/3.3 V, 2-input power NAND Typ.) Low power consumption (Internal cell: 0.37 µW/MHz/gate, 3.3V, Typ.) Drivability (IoL=0.1, 1, 3, 8, 12, 24 mA at 5.0 V, IoL=0.1, 1, 2, 6, 12 mA at 3.3 V, 	2.5V	2.5V	
Features			3.3V	
	loL=0.1, 0.5, 1, 3, 6 mA at 2.5 V, loL=0.05, 0.3, 0.6, 2, 4 mA at 2.0 V)		3.3V	
			5.0V	1-

S1X60000 Series

		CAVAGOGO C. I	Core	1/0	1-
Series S1X60000 Series • High density integration (0.25 µm CMOS process technology and 3/4/5 layer interconnect					
		• High-density integration (0.25 μ m CMOS process technology and 3/4/5-layer interconnect process, number of raw gates: 2,500,000 Max.)		3.3V	
	Features	 High-speed operation (Internal gate delay: 107 ps/2.5 V, 2-input power NAND Typ.) Low power consumption (Internal cell: 0.18 \(\mu \)W/MHz/gate, 2.5 V, Typ.) 	2.5V	2.5V	
		• Drivability (lot = 0.1, 1, 3, 6, 12, 24 mA at 3.3 V, lot = 0.1, 1, 3, 6, 12, 24 mA at 2.5 V,		3.3V	
		$I_{OL} = 0.05, 0.3, 1, 2, 4, 8 \text{ mA at } 2.0 \text{ V}$			

S1X80000 Series

5 1X80000 Series		Core	1/0
Series	S1X80000 Series	1.8V	3.3V
Features	 Based on 0.15 μm CMOS process technology using 4/5-layer interconnect process Internal gate delay: 47.1ps/1.8V, 2-input NAND Typ. Lower power consumption (Internal cell: 0.063 μW /MHz/gate 2-input NAND Typ.) Drive performance (IoL=2,4,8,12mA at 3.3V) 	LDO	3.3V

Standard Cells

ASICs

I/O

Core

Core I/O

Standard cells (cell-based ASICs) are semi-custom ICs that enable optimally designed internal logic cells, memories such as ROM and RAM, CPU peripherals, and analog circuits to be implemented all on the same chip. As such, standard cells enable more design flexibility than do gate arrays, offer more advanced functionality and higher integration, and can be developed as a system-on-a-chip optimized for the customer's needs.

Such optimization leads to ever more compact, power-conserving devices.

\$1K60000 Series

	3 I Kooooo Series	2.0V	2.0V	4		
	Sprips	Series S1K60000 Series			11	
Series	Series	3 TROUGHES				
		 Ultra large scale integration (0.25 m CMOS, using 3-, 4- or 5-layer interconnect process, number of raw gates: 3,900,000 Max.) 		3.3V		
	Features	 High-speed operation (Internal gate delay: 106ps/2.5V, 2-input NAND Typ.) Low power consumption (Internal cell: 0.09 \(\nu \text{W/MHz/gate}, 2.5V, \text{Typ.} \) Drivability (IoL = 0.1, 1, 3, 6, 12, 24 mA at 3.3 V, IoL = 0.1, 1, 3, 6, 9, 18 mA at 2.5 V, IoL = 0.05, 0.3, 1, 2, 3, 6 mA at 2.0 V) 				

S1K80000 Series		1.8V	3.3V	1
Series	S1K80000 Series	LDO	3.3V]
Features	 Based on 0.15 μm CMOS process technology using 4/5-layer interconnect process Internal gate delay: 43.9ps/1.8V, 2-input NAND Typ. Lower power consumption (Internal cell: 0.039 μW /MHz/gate 2-input NAND Typ.) Drive performance (Io_L=2,4,8,12mA at 3.3V) 			

Macro Cells

1. PLL

Series	S1X5V000	S1X5	0000
Macro Type	A35M	A35K	A35M
Operation Voltage	4.5 to 5.5V	3.0 to	3.6V
Input Frequency	5MHz to 40MHz	32kHz	5MHz to 40MHz
Multiplication Ratio	x2 to x26	x610 to x4096	x2 to x26
Output Frequency	20MHz to 135MHz	20MHz to 135MHz	
Period Jitter	±3%	±3%	±2%
Output Duty	50%±10%	50%±	=10%
Lock Up Time	ne 100µs		100µs
Low Pass Filter	On chip	On chip	
Temperature Range	-40 to 110℃	-40 to 85℃	
Layer	3	3	}

Series	\$1X60000/\$1K60000		S1X80000/	S1K80000
Macro Type	A25K	A25M	A15K	A15M
Operation Voltage	2.3 to	2.7V	1.65 to	1.95V
Input Frequency	32kHz	5MHz to 150MHz	32kHz	5MHz to 150MHz
Multiplication Ratio	Max. 16000	x1 to x16	x571 to x6667	x1 to x16
Output Frequency	20MHz to 200MHz		Hz 20MHz to 200MHz	
Period Jitter	±2%	±200ps	POUT<=100	MHz ±2%
r criod dictor	==270	±200μs POUT>100MHz ±200μ		Hz ±200ps
Output Duty	50%	±5%	50%±	400ps
Lock Up Time	100msec	100µs	100msec	200µs
Low Pass Filter	On chip		On o	chip
Temperature Range	-40 to 85°C		-40 to	110℃
Layer	3		4	

2. ROM

Series	S1X50000	S1X60000	S1X80000/S1K80000
Macro Type	Standard	Standard	Standard
Memory Size/Module	1k to 256K-bit	1k to 256K-bit	1k to 512K-bit
Data Bus Width	x1 to x64 1-bit step	x1 to x64 1-bit step	x1 to x64 1-bit step
Operate Voltage	2.0V, 2.5V, 3.0V, 3.3V	2.0V, 2.5V	1.8V
Operate Frequensy (Max.)	50MHz	66MHz	56MHz
Layer	3	3	3

Macro Cells

ASICs

3. SRAM

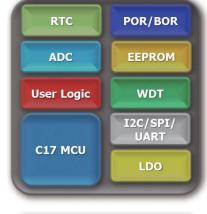
Series	S1X5V000	
Масго Туре	Standard	
Port	1-port 2-port (1R+1	
Memory Size/Module	128 to 16K-bit	
Data Bus Width (bit)	x1 to x32 1-bit step	
Operating Voltage	3.3V, 5.0V	
Operation Frequency (Max.)	50MHz/5.0V	
Layer		3

Series	S1X50000					
Macro Type	Stan	dard	High-Density		High Speed	
Port	1-port	Dual port (2R+2W)	1-port	1-port	2-port (1R+1W)	Dual port (2R+2W)
Memory Size/Module	128 to 64K-bit	1K to 64K-bit	32K to 512K-bit	32K to 72K-bit		
Data Bus Width (bit)	x1 to x32 1-bit step	x8, x16, x24, x32	x8, x16, x32	x1 to x144 1-bit step		
Write Option	Byte	Write	-	Byte Write		
Operating Voltage	2.0V, 2.5V,	3.0V, 3.3V	2.0V, 3.0V, 3.3V	3.3V		
Operation Frequency (Max.)	711	ИНz	76MHz	125MHz 110MHz		
Layer	3	3	3	3		

Series	\$1X60000/\$1K60000				
Масго Туре	Standard		High-Density	High	Speed
Port	1-port	Dual port (2R+2W)	1-port	1-port	2-port (1R+1W)
Memory Size/Module	128 to 64K-bit	1K to 64K-bit	32K to 512K-bit	128 to 64K-bit	
Data Bus Width (bit)	x1 to x32 1-bit step	x8, x16, x24, x32	x8, x16, x32	x4 to x64 1-bit step	
Write Option	Byte Write		Byte Write	Byte	Write
Operating Voltage	2.0V, 2.5V		2.0V, 2.5V	2.5V	
Operation Frequency (Max.)	125MHz 119MHz		71MHz	179MHz	
Layer	3		3		3

Series	\$1X80000/\$1K80000			
Масго Туре		Standard		Large Scale
Port	1-port	2-port (1R+1W)	Dual port (2R+2W)	1-port
Memory Size/Module	128 to 64K-bit	64 to 16K-bit	1K to 32K-bit	128K to 1M-bit
Data Bus Width (bit)	x1 to x32 1-bit step	x1 to x32 1-bit step x1 to x32 1-bit step x8, x16, x24, x32		x8, x16, x32
Write Option	Byte Write – Byte Write		1-bit Write	
Operating Voltage	1.8V			1.8V
Operation Frequency (Max.)	125MHz	119MHz	116MHz	74MHz
Layer	3	4	3	3

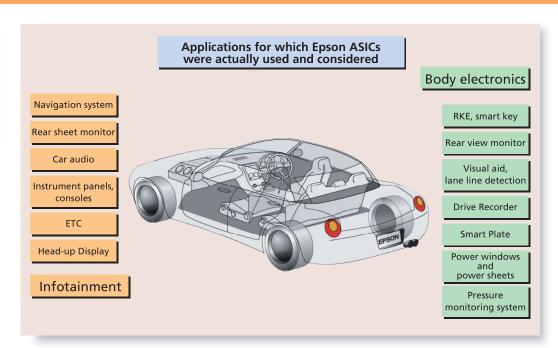
Ask our sales department regarding Gate Array SRAM.


Epson Originals

Epson Originals -1- Macro examples for embedded use

Epson ASICs can utilize various macros from Epson ASSPs or MCUs. Ask our sales department for details.

MCU Macro examples LDO POR/BOR ADC SVD RTC WDT I²C/SPI/UART USB2.0 EEPROM Built-in OSC


Display controller Macro examples LVDS-Rx LVDS-Tx mini-LVDS-Tx

Epson Originals -2- Usable on Automobile

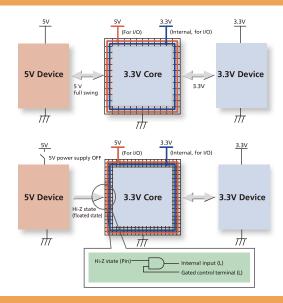
Achievement of ASIC on Automobile

Epson Originals

ASICs

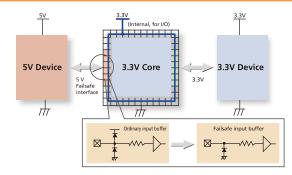
Epson Originals -3- Power System Interface

Development of low-voltage system power supplies continues as part of the trend toward reducing power consumption. However, in cases where not all system components can run on a single low-voltage power supply, multiple power supplies are used for the same system. Consequently, many of today's portable electronic devices include dual (5 V/3.3 V) power supplies, each with its own signals.


5 V/3.3 V Dual Power Supply System

Level Shifter

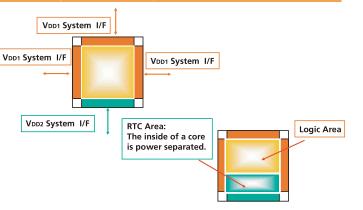
Since it is often the case with ASICs that several ICs are connected in the same system, such systems are typically required to handle two types of level signals for 5 V and 3.3 V power. In S1L50000 and S1X50000 series products, the inclusion of two power supplies (such as 5 V and 3.3 V power supplies) enables the implementation of a bilevel (5 V, 3.3 V) signal interface for each I/O buffer. Such an interface is best suited for applications that include high-speed signal processing and high drive current capacity.


Gated I/O buffer

The use of the gated input buffer enables input in the Hi-Z state, which has not usually been possible using a buffer. In a system using dual-line power supply, the high-voltage power supply may be cut off. Using this function allows hot-plugging a PC card and achieving lower power consumption in the backup mode of PDA

3.3 V Single Power Supply System

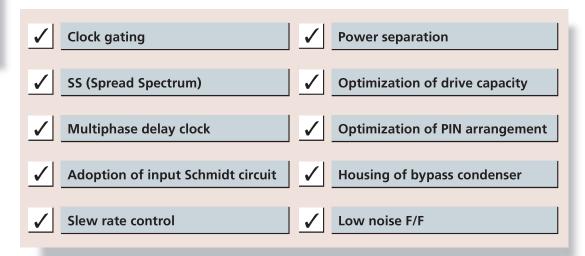
Failsafe I/O Buffer Even when system constraints preclude the implementation of a dual power supply system, it is still possible to provide an interface between a 3.3 V single power supply chip and a 5 V chip by implementing an input buffer that does not include a forward diode (in the VDD direction), which also provides failsafe support for output.


Power separation suitable for low voltage power supply and low power consumption

IO Power Separation Interface with the devices of other power systems can be possible by power separation of I/O cell area.

Core Power Separation

 When mounted with RTC, power separation between RTC area and Logic area can be possible.


Power OFF can be possible in the non RTC area.

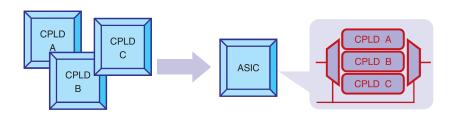
Epson Originals

Epson Originals -4- Countermeasures for EMI

Countermeasures for EMI Epson ASICs will take the following countermeasures to meet requests received from many customers to reduce EMI:

Epson Originals -5- Replacement of existing devices

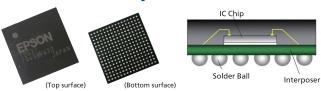
For long life time applications.


Discontinued devices

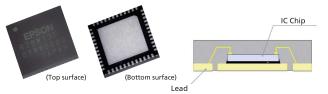
- 5V single power supply with 0.35μm process
- Pin-compatible

Since Epson ASIC does not need fixed power pins, it is possible to replace existing devices with pin compatibility.

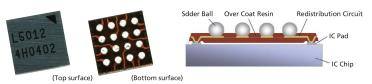
PLDs


- MP path from FPGAs or CPLDs
- Multiple CPLDs into 1 ASIC

Package Lineup

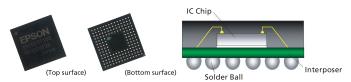

ASICs

Plastic Ball Grid Array (PBGA)


PKG Type	Body Size (mm)	Ball Pitch (mm)
PBGA1UC256 PBGA1UC256	17 X 17 X 1.7 (PBGA1UE) 17 X 17 X 1.3 (PBGA1UC)	1.0

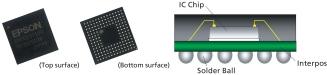
Quad Flat Non-leaded Package (QFN)

PKG Type	Body Size (mm)	Lead Pitch (mm)
SQFN4-24	4 X 4 X 1.0	0.5
SQFN5-32	5 X 5 X 1.0	0.5
SQFN7-48	7 X 7 X 1.0	0.5
SQFN9-64	9 X 9 X 1.0	0.5


WCSP

PKG Type	Pin	Body Size (mm)	Ball Pitch (mm)
WCSP(S1L5012)	16	2.4 X 2.4 X 0.8	0.5
WCSP(S1L5028)	25	3.0 X 3.0 X 0.8	0.5
WCSP(S1L5075)	49	4.2 X 4.2 X 0.8	0.5
WCSP(S1L5125)	81	5.0 X 5.0 X 0.8	0.5
WCSP(S1L60093)	49	3.0 X 3.0 X 0.8	0.4

Package Externals


Plastic Fine-pitch Ball Grid Array (PFBGA)

		Solder Ball	
PKG T	ype	Body Size (mm)	Ball Pitch (mm)
PFBGA5U-60	######################################	5 X 5 X 1.2	0.5
PFBGA5U-81		5 X 5 X 1.2	0.5
PFBGA6U-96		6 X 6 X 1.2	0.5
PFBGA6U-121	303101000	6 X 6 X 1.2	0.5
PFBGA7U-144		7 X 7 X 1.2	0.5
PFBGA7U-161		7 X 7 X 1.2	0.5
PFBGA8U-161		8 X 8 X 1.2	0.5
PFBGA8U-181		8 X 8 X 1.2	0.5
PFBGA7U-100	000000000000000000000000000000000000000	7 X 7 X 1.2	0.65
PFBGA8U-112	000000000000000000000000000000000000000	8 X 8 X 1.2	0.65
PFBGA8U-121	000000000000000000000000000000000000000	8 X 8 X 1.2	0.65
PFBGA10U-160		10 X 10 X 1.2	0.65
PFBGA10U-180		10 X 10 X 1.2	0.65
PFBGA12U-208		12 X 12 X 1.2	0.65
PFBGA7U-48	000000 000000 000000 000000 000000 00000	7 X 7 X 1.2	0.8
PFBGA8U-81	00000000	8 X 8 X 1.2	0.8
PFBGA10U-121	00000000000000000000000000000000000000	10 X 10 X 1.2	0.8

PKG Type	Body Size (mm)	Ball Pitch (mm)
PFBGA10U-144	10 X 10 X 1.2	0.8
PFBGA12U-180	12 X 12 X 1.2	0.8
PFBGA14U-220	14 X 14 X 1.2	0.8
PFBGA16U-280	16 X 16 X 1.2	0.8

Very Thin Fine-pitch Ball Grid Array (VFBGA)

(TOP Surface)	(501101115411	Solder Ball	
PKG Ty	/pe	Body Size (mm)	Ball Pitch (mm)
VFBGA4H-49	8000000	4 X 4 X 1.0	0.5
VFBGA5H-81	0010000 0010000 0010000 00110000 001110000 001110000 001110000	5 X 5 X 1.0	0.5
VFBGA6H-96	0000000000 100000000000000000000000000	6 X 6 X 1.0	0.5
VFBGA6H-121		6 X 6 X 1.0	0.5
VFBGA7H-144		7 X 7 X 1.0	0.5
VFBGA7H-161		7 X 7 X 1.0	0.5
VFBGA8H-181		8 X 8 X 1.0	0.5
VFBGA10H-240		10 X 10 X 1.0	0.5
VFBGA10H-121	000000000000000000000000000000000000000	10 X 10 X 1.0	0.8
VFBGA10H-144	00000000000000000000000000000000000000	10 X 10 X 1.0	0.8

Package Externals

ASICs

QFP & TQFP

	PK	G Type	Body Size (mm)	Lead Pitch (mm)
	TQFP12-48		7 X 7 X 1.2	0.5
*	QFP12-48		7 X 7 X 1.7	0.5
	TQFP13-64		10 X 10 X 1.2	0.5
*	QFP13-64		10 X 10 X 1.7	0.5
	TQFP14-80		12 X 12 X 1.2	0.5
*	QFP14-80		12 X 12 X 1.7	0.5
	TQFP14-100		12 X 12 X 1.2	0.4
*	TQFP15-100		14 X 14 X 1.2	0.5
*	QFP15-100		14 X 14 X 1.7	0.5
*	TQFP15-128		14 X 14 X 1.2	0.4
*	QFP15-128		14 X 14 X 1.7	0.4

PKG Type	Body Size (mm)	Lead Pitch (mm)
* QFP20-144	20 X 20 X 1.7	0.5
* QFP21-176	24 X 24 X 1.7	0.5
* QFP22-208	28 X 28 X 1.7	0.5
QFP21-216	24 X 24 X 1.7	0.4
QFP22-256	28 X 28 X 1.7	0.4

^{*} Can be on automobile

Gate Array Package List

Epson's Gate Array Series offers various packages for each base array.

Please select the most suitable package, based on the circuit specifications and number of input/output terminals.

Gate Array Package List is subject to change due to the preparation condition of the lead frame and the improvement of production efficiency. Please consult Epson sales office when you are choosing packages.

S1L5V000 Series

	Al	_2-Series	S1L5V012	S1L5V042	_	S1L5V112	_	S1L5V252	_	S1L5V482
	Al	_3-Series	S1L5V013	S1L5V043	S1X5V513*	S1L5V113	S1X5V523*	S1L5V253	S1X5V533*	S1L5V483
	Al	_4-Series	S1L5V014	S1L5V044	S1X5V514*	S1L5V114	S1X5V524*	S1L5V254	S1X5V534*	S1L5V484
	Ra	aw Gates	8.9k	42.0k	26 . 0k	109 . 3k	90 . 3k	254 . 4k	235 . 0k	479.9k
А	L2-Usal	ole Gates	2.7k	12 . 6k	_	32 . 8k	_	63.6k	_	119.9k
А	.L3-Usal	ole Gates	5 . 4k	25.2k	14.3k	65 . 6k	49.7k	139 . 9k	129 . 3k	239 . 9k
А	.L4-Usal	ole Gates	6.2k	29.4k	16.9k	76.5k	58 . 7k	165 . 4k	152 . 8k	287.9k
		Pads	48	10	04	16	38	2!	56	308
PKG	Pin	PKG Type								
TQFP	48	TQFP12-48	А	,	A		A			
QFP	48	QFP12-48	А	,	A		A			
TQFP	64	TQFP13-64		,	A		A		A	N
QFP	64	QFP13-64		,	A	A		А		N
TQFP	80	TQFP14-80		,	A		Α			
QFP	80	QFP14-80		,	А		A		A	
TQFP	100	TQFP14-100		,	A	А		Α		N
TQFP	100	TQFP15-100		,	A	А		А		LQ
QFP	100	QFP15-100		,	A	Α		А		LQ
TQFP	128	TQFP15-128		A (1	04)		A		A	LQ
QFP	128	QFP15-128		A (1	04)		A		A	LQ
QFP	144	QFP20-144					A		A	Α
QFP	176	QFP21-176	N	1	N	A (1	68)		A	LQ
QFP	208	QFP22-208	N	1	N		N		A	Α
QFP	216	QFP21-216	N	N			N		A	LQ
QFP	256	QFP22-256	N	N			N	L	.Q	LQ
QFN	24	SQFN4-24	А	1	N		N		N	
QFN	32	SQFN5-32	А	,	A	N		N		
QFN	48	SQFN7-48	N	,	А		А		N	
QFN	64	SQFN9-64	N	,	A		А		A	

A: Available for mass production

LQ: Quality assurance required (Lead frame required to be developed)

N: Not available A(): Usable up to the numbers of pins in the parenthesis

^{*:} Analog PLL built in master

Gate Array Package List

ASICs

S1L50000 Series

2 1F200	100 Se	ries																				
	AL	.2-Series	S1L50062	SILE	0122	SILE	50282	S1L50	552	S1L5	0752	SILE	50992	SIL	L51252	S1L51772	S1L52502	S1L53352	S1L54422	S1L55062	S1L56682	S1L58152
	AL	.3-Series	S1L50063	SILE	0123	SILE	50283	S1L50	553	S1L5	0753	SILE	50993	SIL	L51253	S1L51773	S1L52503	S1L53353	S1L54423	S1L55063	S1L56683	S1L58153
	AL	.4-Series	S1L50064	SILE	0124	SILE	0284	S1L50	554	S1L5	0754	SILE	50994	SIL	L51254	S1L51774	S1L52504	S1L53354	S1L54424	S1L55064	S1L56684	S1L58154
	Ra	aw Gates	5.8k	12	.0k	28	3.8k	55.	5k	75	.8k	99	9.2k	12	25.8k	177.1k	250.2k	335.9k	442.2k	506.7k	668.6k	815.5k
AL	_2-Usat	ole Gates	2.9k	6.	.Ok	14	1.4k	26.	1k	35	.7k	46	3.7k	5	6.6k	79.7k	112.6k	144.5k	176.9k	202.7k	267.5k	326.2k
AL	_3-Usat	ole Gates	5.1k	10	1.6k	25	5.3k	47.2	2k	64	.4k	84	1.4k	10	00.7k	132,8k	187.7k	251,9k	309,5k	354.7k	468.0k	570.9k
AL	_4-Usab	ole Gates	5.5k	11	.4k	27	7.3k	52.8	3k	72	.Ok	94	1.3k	1	19.5k	168.2k	237.7k	319.1k	397.9k	456.1k	601.7k	734.0k
		Pads	48	64	56	104	88	144	124	168	144	192	168	21	6 188	224	264	308	352	376	432	480
	F	Pad Pitch	70 <i>µ</i>	70μ	80μ	70μ	ι80μ	70μ8	30μ	70μ	80μ	70μ	ι80μ	70	μ80μ	80 <i>µ</i>	80 <i>µ</i>	80μ	80μ	80 <i>µ</i>	80 <i>µ</i>	80 <i>µ</i>
PKG	Pin	PKG Type																				
TQFP	48	TQFP12-48	Α	Α	Α		Α	Α	Α		Α		N									
QFP	48	QFP12-48	Α	Α	Α		Α	Α	Α		Α		Α		N							
TQFP	64	TQFP13-64		Α	A(56)		Α	Α	Α		Α		Α		Α	Α	LQ	N	N			
QFP	64	QFP13-64		Α	A(56)		Α	Α	Α		Α		Α		Α	Α	Α	N	N			
TQFP	80	TQFP14-80	A(48)	A(64)	A(56)	Α	Α	Α	Α		Α		Α		Α	Α	Α	Α				
QFP	80	QFP14-80	A(48)	A(64)	A(56)	Α	Α	Α	Α		Α		Α		Α	Α	Α	Α	N			
TQFP	100	TQFP14-100		A(64)	A(56)	Α	A(88)	Α	Α		Α		Α		Α	Α	N	N				
TQFP	100	TQFP15-100				Α	A(88)	Α	Α		Α		Α		Α	LQ	Α	LQ	LQ	N	N	
QFP	100	QFP15-100				Α	A(88)	Α	Α		Α		Α		Α	Α	Α	LQ	LQ	N	N	
TQFP	128	TQFP15-128				A(104	1	Α			Α		Α		Α	Α	Α	LQ	LQ	N	N	
QFP	128	QFP15-128				A(104	1	Α			Α		Α		Α	Α	Α	LQ	LQ	N	N	
QFP	144	QFP20-144					LQ	Α			Α		Α		Α	Α	Α	Α	LQ	LQ	LQ	N
QFP	176	QFP21-176	N	N	N	N	N	N		A(168)			A(168)		Α	Α	Α	LQ	LQ			
QFP	208	QFP22-208	N	N	N	N	N	N		N		N	N	N		A	Α	A	A	N	N	N
QFP	216	QFP21-216	N	N	N	N	N	N		N	N	N	N	Α		Α	LQ	LQ	LQ	N	N	N
QFP	256	QFP22-256	N	N	N	N	N	N		N	N	N	N	N	I N	N	LQ	LQ	LQ	Α	Α	N
QFN	24	SQFN4-24	Α	Α	Α	N	N															
QFN	32	SQFN5-32	Α	Α	Α		Α		N													
QFN	48	SQFN7-48	Α	Α	Α		Α		Α		Α		Α		Α							
QFN	64	SQFN9-64		Α	A(56)		Α		Α		Α		Α		Α	Α	Α					

A: Available for mass production LQ: Quality assurance required (Lead frame required to be developed)

N: Not available A(): Usable up to the numbers of pins in the parenthesis

Gate Array Package List

S1L60000 Series

3 I LOUGO	0 5011											
		AL3-Series	S1L60093	S1L60173	S1L60283	S1L60403	S1L60593	S1L60833	S1L61233	S1L61583	S1L61903	S1L62513
		AL4-Series	S1L60094	S1L60174	S1L60284	S1L60404	S1L60594	S1L60834	S1L61234	S1L61584	S1L61904	S1L62514
		Raw Gates	99.2k	171 . 8k	284.4k	400.3k	595.4k	831 . 6k	1,234.9k	1,587 . 8k	1,903 . 0k	2,519.6k
	AL3-L	Jsable Gates	59.6k	103.1k	142.2k	200.2k	297.7k	332.7k	494.0k	635.1k	761.2k	1,007.9k
	AL4-L	Jsable Gates	69.5k	120.2k	184 . 9k	260.2k	387.0k	415 . 8k	617.5k	793.9k	951.5k	1,259.8k
		70μm Pads	112	148	188	224	272	-	-	-	-	-
		80μ m Pads	-	-	-	-	-	284	344	388	424	488
PKG	Pin	PKG Type										
TQFP	48	TQFP12-48	Α	Α	Α	N						
QFP	48	QFP12-48	Α	Α	Α	N						
TQFP	64	TQFP13-64	Α	Α	Α	Α	Α	LQ				
QFP	64	QFP13-64	Α	Α	Α	Α	Α	Α				
TQFP	80	TQFP14-80	Α	Α	Α	Α	Α	Α	Α			
QFP	80	QFP14-80	А	Α	Α	Α	Α	Α	Α			
TQFP	100	TQFP14-100	Α	Α	Α	Α	Α	N				
TQFP	100	TQFP15-100	Α	Α	Α	Α	Α	LQ	LQ			
QFP	100	QFP15-100	Α	Α	Α	Α	Α	LQ	LQ			
TQFP	128	TQFP15-128	A(112)	Α	Α	Α	Α	LQ	LQ	N		
QFP	128	QFP15-128	A(112)	Α	Α	А	Α	LQ	LQ	N		
QFP	144	QFP20-144	N	Α	Α	А	Α	Α	LQ	LQ	N	
QFP	176	QFP21-176	N	N	Α	Α	Α	Α	LQ	N	N	
QFP	208	QFP22-208	N	N	LQ	LQ	Α	Α	Α	N		
QFP	216	QFP21-216	N	N	N	Α	Α	LQ	LQ	N	N	N
QFP	256	QFP22-256	N	N	N	N	LQ	LQ	LQ	LQ	LQ	N
QFN	24	SQFN4-24	N	N	N							
QFN	32	SQFN5-32	А	N	N							
QFN	48	SQFN7-48	А	Α	Α	А						
QFN	64	SQFN9-64	А	А	Α	А	А	Α	N			

A: Available for mass production LQ: Quality assurance required (Lead frame required to be developed) N: Not available A(): Usable up to the numbers of pins in the parenthesis

Package's Thermal Resistance

ASICs

Among LSIs, chip temperatures (T_i) rise as power consumption increases. The chip temperature of a packaged IC can be calculated based on the ambient temperature T_a , the package's thermal resistance θ_{i-a} , and the power dissipation P_D as shown below.

Chip temperature $(T_j) = T_a + (P_D \times \theta_{j-a})$ (°C)

As a general rule, the chip temperature(Tj) should be kept under 125°C. Note also that the package's thermal resistance varies widely depending on the chip size and substrates, the mounting method, the forced cooling.

QFP

Package	θ _{i-a} (℃∕W)							
Туре	Om/sec	1m/sec	2m/sec					
QFP12	51	46	44					
QFP13	48	45	43					
QFP14	44	41	39					
QFP15	41	39	37					
QFP20	36	33	31					
QFP21	34	31	29					
QFP22	27	24	23					
TQFP12	53	47	45					
TQFP13	47	44	42					
TQFP14	43	40	38					
TQFP15	42	36	34					

SQFN

Package	∂ j-a (°C∕W)							
Туре	Om/sec	lm/sec	2m/sec					
SQFN4	42	39	37					
SQFN5	40	37	35					
SQFN7	31	28	25					
SQFN9	26	23	21					

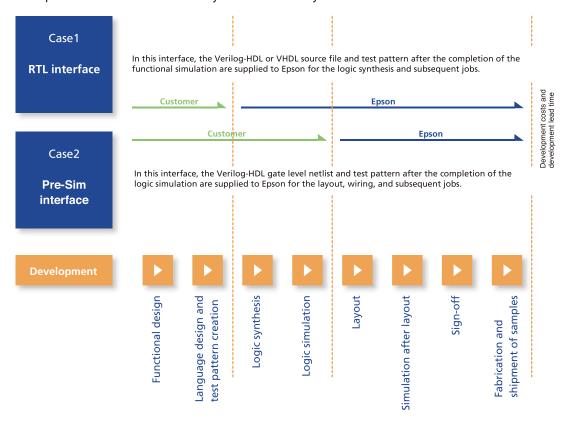
PFBGA

Package	θ _{j-a} (℃∕W)							
Туре	Om/sec	1m/sec	2m/sec					
PFBGA5	60	55	54					
PFBGA6	54	49	48					
PFBGA7	49	44	43					
PFBGA8	44	39	38					
PFBGA10	37	32	30					
PFBGA12	33	29	27					
PFBGA13	30	26	24					
PFBGA14	24	20	19					
PFBGA16	21	18	17					

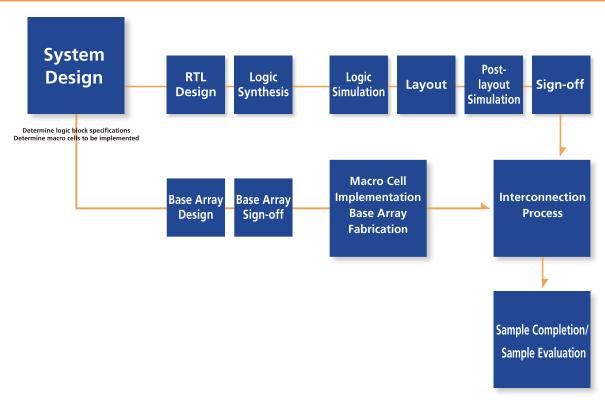
VFBGA

Package	θ _{i-a} (℃∕W)							
Туре	Om/sec	lm/sec	2m/sec					
VFBGA4	66	61	60					
VFBGA5	60	55	54					
VFBGA6	54	49	48					
VFBGA7	49	44	43					
VFBGA8	44	39	38					
VFBGA10	37	32	30					

PBGA

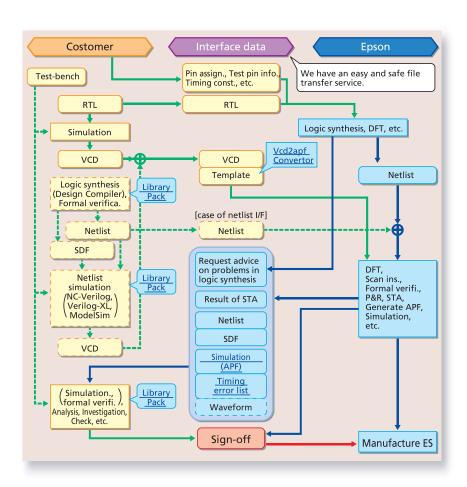

Package	θ _{i-a} (℃∕W)							
Type	Om/sec	lm/sec	2m/sec					
PBGA1U	24	21	20					

Values listed above are typical values using following evaluation boards, but the thermal resistance can easily vary depending on conditions.


- QFP, SQFN, PBGA : JEDEC STD board (114.3x76.2x1.6mm 4layer)
- PFBGA, VFBGA: JEDEC STD board (114.5x101.5x1.6mm 4layer)

User Interface

In order to flexibly comply with the customer's design stages, Epson offers two types of user interfaces. The development lead time and development costs are determined by the interface of your choice.


Design of Embedded Array Chips

Development Flow

ASICs

Interface Flow

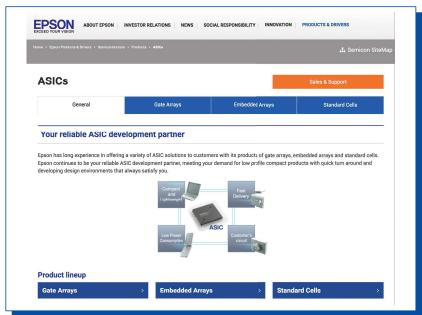
Library Pack

Supported series

Technology	0.35µm	0.25µm	Ο.15μm
Gate Array	\$1L50000 \$1L5V000	S1L60000	-
Embedded Array	\$1X5V000 \$1X50000	S1X60000	(S1X80000)
Standard cell	-	S1K60000	S1K80000

Supported tools

Category	Tool name	
Logic synthesizer	Design Compiler	
Simulator	Verilog-XL, NC-Verilog, ModelSim(Verilog), ModelSim(VHDL)*	


^{*:} Not available for S1L5V000, S1X5V000, S1X80000, S1K80000 series

Epson ASIC Website

Epson Website Presents ASIC product information

<global.epson.com/products_and_drivers/semicon/products/asic/>

<ASIC HP>

NOTICE: PLEASE READ CAREFULLY BELOW BEFOR USE THIS DOCUMENT

The content of this document is subject to change without notice.

- 1. This document may not be copied, reproduced, or used for any other purposes, in whole or in part, without the consent of Seiko Epson Corporation("Epson").
- 2. Before purchasing or using Epson products, please contact with our sales representative for the latest information and be always sure to check the latest information published on Epson's official web sites and sources.
- 3. Information provided in this document such as application circuits, programs, usage, etc., are for reference purpose only. Epson makes no guarantees against any infringements or damages to any third parties' intellectual property rights or any other rights resulting from the information. This document does not grant you any licenses, intellectual property rights or any other rights with respect to Epson products owned by Epson or any third parties.
- 4. Epson is committed to constantly improving quality and reliability, but semiconductor products in general are subject to malfunction and failure. In using Epson products, you shall be responsible for safe design in your products; your hardware, software and systems are designed enough to prevent any harm or damages to life, health or property even if any malfunction or failure might be caused by Epson products. In designing of your products with using Epson products, please be sure to check and comply with the latest information regarding Epson products (this document, specifications, data sheets, manuals, Epson's web site, etc.). When using the information included in the above materials such as product data, chart, technical contents, programs, algorithms and application circuit examples, you shall evaluate your products both in stand-alone basis and within your overall systems. You shall be solely responsible for deciding whether or not to adopt and use Epson products.
- 5. Epson has prepared this document carefully to be accurate and dependable, but Epson does not guarantee that the information is always accurate and complete. Epson assumes no responsibility for any damages which you incurred by due to misinformation in this document.
- 6. No dismantling, analysis, reverse engineering, modification, alteration, adaptation, reproduction, etc., of Epson products is allowed.
- 7. Epson products have been designed, developed and manufactured to be used in general electronic applications (office equipment, communications equipment, measuring instruments, home electronics, etc.) and applications individually listed in this document ("General Purpose"). Epson products are NOT intended for any use beyond the General Purpose that requires particular/higher quality or reliability in order to refrain from causing any malfunction or failure leading to harm to life, health or serious property damage or severe impact on society, including, but not limited to listed below. Therefore, you are advised to use Epson products only for the General Purpose. Should you desire to buy and use Epson products for the particular purpose other than the General Purpose, Epson makes no warranty and disclaims with respect to Epson products, whether express or implied, including without limitation any implied warranty of merchantability or fitness for any particular purpose. Please be sure to contact our sales representative and obtain an approval in advance.

[Particular purpose]

Space equipment (artificial satellites, rockets, etc.)/

Transportation vehicles and their control equipment (automobiles, aircraft, trains, ships, etc.)/

Medical equipment (other than applications individually listed in this document)/

Relay equipment to be placed on sea floor/ Power station control equipment/ Disaster or crime prevention equipment/

Traffic control equipment/ Financial equipment/

Other applications requiring similar levels of reliability as the above

- 8. Epson products listed in this document and our associated technologies shall not be used in any equipment or systems that laws and regulations in Japan or any other countries prohibit to manufacture, use or sell. Furthermore, Epson products and our associated technologies shall not be used for developing military weapons of mass destruction, military purpose use, or any other military applications. If exporting Epson products or our associated technologies, you shall comply with the Foreign Exchange and Foreign Trade Control Act in Japan, Export Administration Regulations in the U.S.A (EAR) and other export-related laws and regulations in Japan and any other countries and follow the required procedures as provided by the relevant laws and regulations.
- 9. Epson assumes no responsibility for any damages (whether direct or indirect) caused by or in relation with your non-compliance with the terms and conditions in this document.
- 10. Epson assumes no responsibility for any damages (whether direct or indirect) incurred by any third party that you assign, transfer, loan, etc., Epson products.
- 11. For more details or other concerns about this document, please contact our sales representative.
- 12. Company names and product names listed in this document are trademarks or registered trademarks of their respective companies.

©Seiko Epson Corporation 2021

[Registered trademarks, trademarks, and company names]

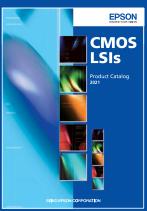
Design Compiler®: Synopsys Inc. in U.S.A.

NC-Verilog®: Cadence Design Systems Inc. in U.S.A.

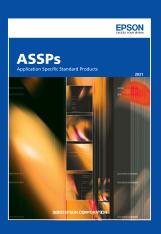
Compact Flash®: Western Digital Corporation or its affiliates in the US and/or other countries

SuperFlash®: Silicon Storage Technology, Inc., in the U.S.A.

Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.


Other brand names and product names are trademarks or registered trademarks of their respective owners.

MMP Technology


Supply of this implementation of TPL's MMP technology does not convey a license nor imply a right under any patent, or any other industrial or intellectual property right of TPL, to use this implementation in any finished end-user final product. You are hereby notified that a license for such use is required from TPL. Contact: "mmp-licensing@tplgroup.net"

America

Epson America, Inc.

Headquarter: 3131 Katella Ave., Los Alamitos, CA 90720, USA Phone: +1-562-290-4677

San Jose Office: 214 Devcon Drive San Jose, CA 95112 USA Phone: +1-800-228-3964 or +1-408-922-0200

Europe

Epson Europe Electronics GmbH

Riesstrasse 15, 80992 Munich, Germany Phone: +49-89-14005-0 FAX: +49-8 FAX: +49-89-14005-110

Asia

Epson (China) Co., Ltd.

4th, Floor, Tower 1 of China Central Place, 81 Jianguo Road, Chaoyang District, Beijing 100025 China Phone: +86-10-8522-1199 FAX: +86-10-8522-1120

Shanghai Branch

Room 1701 & 1704, 17 Floor, Greenland Center II, 562 Dong An Road, Xu Hui District, Shanghai, China Phone: +86-21-5330-4888 FAX: +86-21-5423-4677

Shenzhen Branch

Room 804-805, 8 Floor, Tower 2, Ali Center, No.3331 Keyuan South RD(Shenzhen bay), Nanshan District, Shenzhen 518054, China Phone: +86-10-3299-0588 FAX: +86-10-3299-0560

Epson Taiwan Technology & Trading Ltd. 15F., No.100, Songren Rd., Sinyi Dist., Taipei City 110. Taiwan Phone: +886-2-8786-6688

Epson Singapore Pte., Ltd.

438B Alexandra Road, Block B Alexandra TechnoPark, #04-01/04, Singapore 119968

Phone: +65-6586-5500 FAX: +65-6271-7066

Epson Korea Co., Ltd.

10F Posco Tower Yeoksam, Teheranro 134 Gangnam-gu, Seoul, 06235, Korea Phone: +82-2-3420-6695

Seiko Epson Corp. **Sales & Marketing Division**

Device Sales & Marketing Department

29th Floor, JR Shinjuku Miraina Tower, 4-1-6 Shinjuku, Shinjuku-ku, Tokyo 160-8801, Japan

Document code: 701077826

First Issue April 2006 Revised March 2021 in JAPAN $oxin{H}$